Diffusion Chronometry of Magmatic Systems
Geological processes occur in and on the Earth over a range of timescales that form a nested, hierarchical structure. Determining the durations of processes that occur on the shorter end of this time-spectrum has been a challenge. The tools of diffusion chronometry have emerged as a very promising method to provide solutions in many situations.
High temperature magmatic systems provide an excellent natural laboratory for developing and calibrating these tools because various kinds of observations from monitoring volcanoes are able to provide cross checks on the results. Subsequently, the newly developed and refined tools may then be applied to a much wider range of geological and planetary settings.
This project aims to bring together field geologists, experimental scientists, theoreticians and modellers from geosciences as well as neighbouring fields of physics and materials science to advance this development. Some of the main objectives of the current phase of the proposal for this research unit are: the measurement of missing diffusion parameters in some critical systems such as pyroxenes and plagioclase, exploring the recently discovered role of isotopic fractionation at high temperatures due to diffusion, calibrating phase relations to enable the setting of boundary and initial conditions in high resolution diffusion models and exploring the role of textural evolution. These will be accompanied by the development of user-friendly codes and other tools that incorporate the advances. The developed tools will be tested in different field settings.
https://twitter.com/DiffChronometry
Diffusion Workshop – 21-25 October 2024
We would like to draw your attention to a short course on the
Application of diffusion studies to the determination of timescales in geochemistry and petrology (diffusion chronometry / geospeedometry)
More Information here
!!!Exciting News: Extension of the Research Unit for three more years!!!
We are excited to announce that the German Science Foundation (DFG) is funding the second round of the Research Unit “Diffusion Chronometry of Magmatic Systems” (FOR 2881) for three more years. Watch out for new projects and job opportunities. More details coming soon …